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A B S T R A C T   

Governments worldwide have rapidly deployed non-pharmaceutical interventions (NPIs) to mitigate the COVID- 
19 pandemic. However, the effect of these individual NPI measures across space and time has yet to be suffi-
ciently assessed, especially with the increase of policy fatigue and the urge for NPI relaxation in the vaccination 
era. Using the decay ratio in the suppression of COVID-19 infections and multi-source big data, we investigated 
the changing performance of different NPIs across waves from global and regional levels (in 133 countries) to 
national and subnational (in the United States of America [USA]) scales before the implementation of mass 
vaccination. The synergistic effectiveness of all NPIs for reducing COVID-19 infections declined along waves, 
from 95.4% in the first wave to 56.0% in the third wave recently at the global level and similarly from 83.3% to 
58.7% at the USA national level, while it had fluctuating performance across waves on regional and subnational 
scales. Regardless of geographical scale, gathering restrictions and facial coverings played significant roles in 
epidemic mitigation before the vaccine rollout. Our findings have important implications for continued tailoring 
and implementation of NPI strategies, together with vaccination, to mitigate future COVID-19 waves, caused by 
new variants, and other emerging respiratory infectious diseases.   

1. Introduction 

The COVID-19 pandemic has caused significant disruption to daily 
lives, causing over 184 million confirmed cases and 4 million deaths as 
of 4 July 2021 (WHO, 2021). Non-pharmaceutical interventions (NPIs) 
have been deployed across the World to curb the pandemic (Perra, 
2021). With the rollout of COVID-19 vaccines using different dosing and 
population targeting strategies (Saad-Roy et al., 2021), robust vaccina-
tion programs would enable the relaxation of NPIs (ECDC, 2021; Huang 

et al., 2021a). However, given the delays in vaccine production and the 
inequality of vaccine allocations (Zhou, 2020) as well as the emergence 
of novel variants (Kupferschmidt, 2021; Lai et al., 2021a), NPIs should 
be maintained to avoid further resurgences before herd immunity can be 
achieved (ECDC, 2021; Pang et al., 2020; Yang et al., 2021). 

The impact of NPI policies might be dynamic, determined by a va-
riety of factors such as policy fatigue and population immunity. First, 
because of variations in the government’s execution of NPIs and the 
degree of people’s inclination to comply, the same NPI may work 
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differently in different regions. Second, over a lengthy period adopting 
NPIs, people tend to experience psychological tiredness, reducing the 
effectiveness of NPIs (Goldstein et al., 2021). Third, changes in mutant 
viruses, vaccination rates, and immunity acquired from infections may 
have an impact on the efficacy of individual NPIs (De Visscher et al., 
2021). Given that there is a long way to go before herd immunity for 
COVID-19 (Aschwanden, 2021) is achieved, understanding the role of 
different NPIs in reducing COVID-19 transmission before vaccine roll-
outs is critical for tailoring effective NPI strategies for future COVID-19 
waves and other epidemics caused by respiratory infections. 

The effectiveness of NPIs on pandemic mitigation had been demon-
strated by previous studies that mostly focused on the first wave of the 
pandemic (Baker et al., 2021; Flaxman et al., 2020; Huang et al., 2021a; 
Lai et al., 2020a; Li et al., 2021; Tian et al., 2020), with limited analysis 
of subsequent waves and multi-scale research (Hale et al., 2021b). The 
implementation of NPIs in the first wave had, to some degree, changed 
human knowledge and perceptions, behaviours and responses to miti-
gate the outbreaks (Doogan et al., 2020; Farooq et al., 2020; Geldsetzer, 
2020; Hu et al., 2020; Brauner et al., 2021). The enduring importance of 
NPI responses to COVID-19 has also been highlighted (Moore et al., 
2021). Though policy fatigue has been proposed and confirmed in the 
implementation of NPIs (Crane et al., 2021), whether, and to what 
extent, NPI effectiveness decreases with fatigue in subsequent waves 
remains unclear. Additionally, the effects of NPIs may vary across 
countries, nations and subnational regions with different geographical 
characteristics, such as health capacity, residential population density, 
aging ratio, humidity and air temperature (Hsiang et al., 2020; Van 
Bavel et al., 2020; Zhang et al., 2021; Ge et al., 2021). The potential 
differences in NPI effectiveness across multi-geographical levels are 
rarely discussed in existing analyses (Li et al., 2021). 

In this study we estimated the effects of several individual NPIs as 
well as their combinations by identifying their contributions to the 
decay ratio of COVID-19 infections across waves at different 
geographical levels before the onset of any vaccination program. Based 
on the big data collected from multiple public available datasets, we 
assembled a national database, covering 133 countries, territories and 
areas, to estimate NPI efficacy at both global and regional scales, and a 
subnational database, covering 51 states of the United States of America, 
to evaluate national and subnational NPI efficacy in the USA. The effects 
of NPIs across wave and space can provide localized insights into 
tailoring effective NPI strategies for future COVID-19 waves. 

2. Material and methods 

2.1. Data sources and processing 

2.1.1. Epidemiological data 
The daily number of confirmed cases reported by country were ob-

tained from the COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) at Johns Hopkins University (JHU) 
(Dong et al., 2020). While the state-level cases for the US were reported 
by the CDC (Prevention, 2021). The cases were recorded after infection- 
to-confirmation delay since the onset of their infection. To remove the 
influence of outliers and the fluctuation caused by the day-of-week ef-
fect, we smoothed daily case counts with the Gaussian kernel by 
calculating the rolling average using a Gaussian window with a standard 
deviation of 2 days, truncated at a maximum window of 15 days (Haug 
et al., 2020). 

2.1.2. Intervention policy data 
The non-pharmaceutical interventions studied in this work were 

collected and generated from the Oxford COVID-19 Government 
Response Tracker (OxCGRT) (Hale et al., 2021a). The global and 
regional analysis studied school closures, workplace closures, public 
transport closures, gathering restrictions, international travel re-
strictions, movement restrictions and facial coverings. With respect to 

the national and subnational context, we replaced international travel 
control and movement restrictions with internal movement restrictions 
and stay-at-home orders, respectively, due to the changing of collin-
earity and rare variation in international travel control across states of 
the US. The intensity of NPIs policies documented in OxCGRT was scaled 
into discrete values between 0 and 1 by dividing their maximum in-
tensity, where 0 represented an absence of the NPI and 1 represented the 
corresponding maximum intensity. The intensity of school closures was 
further corrected as 1 during public and school holidays (Lai et al., 
2020b). 

2.1.3. Environmental and demographic covariates 
To control for country-specific confounders in the estimates of 

intervention effectiveness varied across countries, we also assembled 
population density, aging ratio, health capacity index, air temperature, 
and humidity for all these 133 study countries. Within each country, 
population density (per square kilometre) was the ratio of the total 
population over the corresponding built-up area in 2014 (Florczyk et al., 
2019). The total and age-grouping population data in 2019 were ob-
tained from the United Nations to calculate the aging ratio (>65 year 
old) among populations (Nations, 2019). Health capacity index was the 
arithmetic average of the five indices, including i) prevent, ii) detect, iii) 
respond, iv) enabling function, and v) operational readiness, developed 
to characterize the health security capacities in the context of the 
COVID-19 outbreak (Kandel et al., 2020). Air temperature and humidity 
were derived from the Global Land Data Assimilation System (Rodell 
et al., 2004). With respect to state-level data of the US, we used an 
alternative health capacity index, i.e., bed capacity, to capture the un-
even distribution of hospital capacity relative to regional need, as well as 
substantial geographic variation in bed capacity per capita from 2012 
(Care, 2021). 

To further remove the day-of-week effect among case testing, diag-
nosis, and data reporting, all data used in this study were assembled and 
aggregated into a weekly dataset. The studied countries were selected by 
being documented in every dataset of epidemiological data, intervention 
policy data and environmental and demographic covariates. The details 
of data collection and processing are further provided in the Supple-
mentary Information. 

2.2. Defining waves and groups 

2.2.1. Waves 
The inequality in pandemic development across the world has led 

some countries to confront more than one COVID-19 wave (Aleta et al., 
2020; Kuehn, 2021). To identify potential variation in effects of NPIs 
across waves, we divided the epidemic waves in each country/state 
based on the smoothed daily reported cases. An epidemic wave consti-
tuted a period of three or more consecutive weeks in each country/state, 
when the daily numbers of cases within this period all higher than 5% of 
the maximum daily number of cases in 2020 in corresponding countries/ 
states. The first and last days of these defined time periods were the start 
and end of the corresponding wave, respectively. Noting that the first 
wave of the pandemic in most countries/states began with low-level 
community transmission caused by imported cases, we adjusted the 
start date of the first wave. It was set to the day when the number of daily 
new cases exceeded 10 cases for countries where the maximum number 
of daily new cases in the first wave were no >300 cases. Otherwise, the 
start date was set to the day when the number of daily new cases 
exceeded 20 cases. The details and full lists of waves by country/state 
can be found in SI. Up to now, no more than three waves of epidemics 
have been detected before the implementation of mass vaccination in 
most countries/states. 

2.2.2. Regional stratification 
The reported COVID-19 morbidity and mortality showed obvious 

spatial stratified heterogeneity among different countries/states, based 
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on the released epidemiological data. A spatial variance analysis method 
known as a geographical detector model (Wang and Xu, 2017; Wang 
et al., 2016) was used to divide the study countries/states into different 
groups, according to each country/state’s overall morbidity and mor-
tality during the whole research period. Under the circumstance, the 
groups were also implicitly divided by the testing rate (see SI Section 
C.2). Spatial proximity was also considered within groups because 
nearby countries/states were prone to have similar policies, intervention 
methods, as well as environmental conditions. We investigated the 
spatial variation in NPIs effectiveness by dividing 133 countries into 
four groups at the regional level and 51 states into three groups at the 
subnational level based on their COVID-19 morbidity and mortality 
together with geographical proximity (Fig. 1). Thresholds of 1,800 per 
100,000 persons for morbidity and 40 per 100,000 persons for mortality 
were determined by q-statistic index in the geographical detector model 
to select countries with both high morbidity and high mortality. 
Considering the geographical proximity between countries, Asian 
countries and African countries were stratified into two separate groups. 

2.3. Model description 

A Bayesian inference model (Brauner et al., 2021; Flaxman et al., 
2020) was built to disentangle the individual effects of NPIs from the 
empirical changes of weekly growth rates. We measured relative con-
tributions of NPIs on the observed decay ratio of COVID-19 infections 
(denoted as %Δωt) using the existence and intensity change of these 
interventions. 

ωt = ω0

∏n

i=1
exp

(
− (αi + σi)xi,t

)
+ ε, (1)  

where ω0 represents the baseline growth rate without interventions, αi is 
the coefficient of NPIs and control variables xi,t on day t, and ε is the 
error term representing the uncertainty of decay ratio. The confounding 
variables were linearly added into the model regarding the NPI vari-

ables. In contrast to the control variables used to describe the country- 
specific difference in NPIs efficacy, we also introduced normal error 
term σi for xi to capture the intrinsic variation of effectiveness across 
countries. The effect of NPIs set X in a period, such as the first wave of 
the pandemic, can be interpreted as a decay ratio in ω0 by computing 
ei = 1 −

∏
xi∈Xexp(− αixl), where xl is the average strength of the NPI xi 

during that period. The highest effect of NPIs set X is 1, representing that 
the transmission is fully contained or interrupted by the set. 

The decay ratio was defined as a percentage of reduction in the 
baseline growth rate by the instantaneous growth rate. The instanta-
neous growth rate of transmission at each point of time was calculated as 
the current weekly number of new infections over the infections in the 
previous week. In addition to interventions, there were many other 
factors (e.g., the transmissibility of new variants and the variation of 
case diagnosis and reporting) that might affect the growth rate of 
COVID-19 transmission over time. Therefore, the baseline growth rates 
in different waves and countries were assumed as the mean of the top 
three highest instantaneous growth rates in the corresponding wave and 
country. We used the mean of highest growth rates to increase the sta-
bility of the baseline and model outputs, as the rate calculated from 
empirical data might be easily affected by an unusually high single value 
of reported case number. 

We used the spatiotemporal Bayesian inference model to evaluate 
the effect coefficients in Eq. (1) based on the observed real-time COVID- 
19 growth rates, identifying the relative NPIs and vaccination effec-
tiveness. We first evaluated the global effectiveness of NPIs for the whole 
data context (Fig. 2). In addition to the overall NPIs effectiveness, we 
also evaluated NPIs regional effects in the first, second and third waves 
for each country group to show the potential large spatiotemporal di-
versity, respectively. Finally, national and subnational variation of NPIs 
efficacy in space and time was demonstrated by the case of the USA with 
51 states. To exclude the vaccination impact on COVID-19 growth, we 
only used data before the onset of the vaccination project in all coun-
tries. All estimations were performed using Markov chain Monte Carlo 

Fig. 1. The different groups in (a) and (b) were determined by pandemic parameters and geographic proximity (see SI for more information). (c) - (d) The pandemic 
trajectories of weekly reporting cases for each country/state (background polylines) and group (solid curves). The solid curves for each group are mean weekly cases 
across countries/states in that group. Starting points (represented by different marks) of different waves in each group are generally illustrated by their mean starting 
dates which were quantitatively defined in this study. A full list of countries in each group and the corresponding time frame of different waves of COVID-19 can be 
found in SI Table C1 – C4, C6 – C8. 
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(MCMC) methods. The reliability of our model was assessed by the cross- 
validation for overall intervention effects. Sensitivity analyses were also 
performed to assess model robustness in terms of our assumptions. 

Fig. 2. The computational environmental settings for analysis from subnational scale to global scale. We used growth rate as the outcome variable to describe the 
trajectory of the pandemic. The empirical changes of growth rate were decoded into the effectiveness of both NPIs as well as the control variables. 

Fig. 3. Effects of individual NPIs on 
reducing the transmission of COVID-19 
across waves within our data context. The 
coefficients (αi) of NPIs parameters in 
different periods were calibrated by the 
default model setting with corresponding 
data contexts. The effect estimates were 
calculated by the coefficients of NPIs through 
1 − exp( − αixi), where xi is the average 
strength of NPI implementation (represented 
by the background shadow). We rescaled the 
average strength by multiplying 100 to adapt 
the x-axis. The synergistic effectiveness of all 
NPIs (All waves: 92.3%, Wave 1: 95.4%, 
Wave 2: 79.9%, Wave 3: 56.0%) were 
nonlinear cumulative in terms of the indi-
vidual effect by 1 −

∏
xi

exp(− αixi). The effect 
over all waves represents the average per-
formance of NPIs against COVID-19 in 133 
countries (Fig. 1(a)) before their vaccination 
by 22 June 2021. Wave 1 refers to the 
average performance of NPIs against COVID- 
19 in the first wave of the 133 countries. The 
specific periods of the first wave in 133 
countries are not fully consistent, meaning 
that the first wave does not refer to a 
particular time but a general period of the 
first outbreak. The second wave refers to the 
periods starting from the second outbreak. % 
Δωt represents a decay ratio of the COVID-19 
infection rate in each country. The 5th, 25th 
(Q1), 50th (median), 75th (Q3), and 95th 
percentiles of estimates of %Δωt are pre-
sented to indicate details of the variations. 
The uncertainty intervals of NPI effectiveness 
refer to the variance over corresponding data 
contexts.   
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3. Results 

3.1. Global effects of individual NPIs across waves 

We estimated all mitigation strategies of immediate interest before 
the start of mass vaccination implementation, where the four NPIs with 
the highest impacts (>30%) on transmission growth rate included 
school closures (median 36.8%, interquartile range [IQR] 27.0–48.3%), 
international travel restrictions (36.0%, 26.3–40.2%), facial coverings 
(33.6%, 27.0–40.4%) and gathering restrictions (31.7%, 27.2–45.4%) 
(Fig. 2). The NPIs with moderate effects (25% − 30%) included work-
place closures (28.3%, 27.7–31.8%) and public transport closures 
(25.6%, 22.9–35.9%), while movement restrictions had relatively 
limited impacts. The overall synergistic effectiveness of these NPIs 
reached 92.3% (IQR: 88.1–96.9%) and declined with the epidemic 
process of COVID-19, from 95.4% in the first wave to 56.0% in the third 
wave. 

The effectiveness and dominance of NPIs varied across waves 
(Fig. 3). In the first wave, the most effective NPI was international travel 
restrictions (median 41.4%, IQR 14.8–46.3%). Results also showed that 
the synergistic effectiveness of all NPIs exceeded 28% in the first wave. 
In the second wave, facial coverings became the NPI with the highest 
effect (38.0%, 33.2–39.5%), while gathering restrictions became the 
most effective NPI in the third wave (20.4%, 10.9–34.5%). In addition, 
the effects of workplace closures, public transport closures and move-
ment restriction declined to 9.7 (IQR 4.2–25.4%), 3.5% (1.3–26.4%) and 
4.41% (1.0–22.2%) in the third wave, respectively. 

3.2. Regional NPIs impacts across waves by country group 

Further, this study revealed that effects of individual non- 
pharmaceutical measures showed discernible spatial and temporal var-
iations across countries and waves, when only the periods before vaccine 
rollouts were included for accurate evaluation of NPIs (Fig. 4). 

In the first wave, gathering restrictions in group 3 had the highest 
contribution (median 52.5%, IQR 30.5–58.6%) to transmission reduc-
tion. We found all NPIs in Group 3, i.e., Asian countries, were generally 
more effective than other groups for the first wave, especially gathering 
restrictions (52.5%, 30.5–58.6%), school closures (45.7%, 36.4–54.6%) 
and facial coverings (43.7%, 35.4–44.8%). In Group 4, all NPIs showed 
moderate effects (>20%), with the exception of public transport closure 
(17.4%, 11.8–22.6%). 

In the second wave, four NPIs in Group 1 had the highest effective-
ness among four country groups. Facial coverings had an important role 
in reducing transmission for group 1 from the first to the second wave 
(%Δωt > 30%) and behaved similarly in the second Group’s second-to- 

third waves. Gathering restrictions and school closures exerted a rela-
tively strong effect in both groups during the first two waves (>20%). 
International travel restrictions were one of the most effective NPI in 
affecting the pandemic transmission of Group 1 and made a notable 
contribution (median 33.52%, IQR 23.82–41.91%) in the second wave. 
In Group 4, effects of NPIs were limited (<7%), except for facial cov-
erings (41.3%, 37.6% − 44.9%) and school closures (13.0%, 9.4% −
17.8%). 

After the first wave, as interventions were gradually relaxed, the 
effectiveness of most individual NPIs had declined by different degrees 
in different country groups. This decline was mainly observed in Group 
2, i.e., the European, American, and Oceanian countries with relatively 
high morbidity and mortality, and Group 3, i.e., Asian countries. 
Countries in Group 1 and Group 2 were generally comprised of Euro-
pean, American, and Oceanian countries with relatively low and high 
morbidity and mortality, respectively. The highest effects of all NPIs in 
different waves were 97.9% for Group 3 in the first wave, 89.2% for 
Group 1 in the second wave, and 69.3% for Group 2 in the third wave. 
From the first to the third wave, effects of most individual NPIs were 
reduced, apart from facial coverings in Group 2 and school closures in 
Group 4, whose effects were increased. Workplace closures always 
played a mild role in controlling the spread of the virus in Group 2 for all 
waves but had limited effectiveness for Group 1 in the third wave. 

In the third wave, effects of most NPIs had been critically reduced. 
The effectiveness of workplace closures (from 31.2% to 6.0% in me-
dian), public transport closures (from 33.2% to 5.8%) and movement 
restrictions (from 33.0% to 4.9%) declined from the first to the third 
wave. International travel restrictions were the only NPI which had 
stable effectiveness in all waves (>15%) for Group 3. Distinguishable 
from other groups, in Group 4, i.e., African countries, five out of seven 
NPIs had the lowest effectiveness in the second wave and then climbed 
in the third wave, resulting in the joint effect of all NPIs in the third wave 
surpassing that in the second one. Facial coverings (median 41.3%, IQR 
37.6–44.9%) of the second wave and school closures (30.8%, 
21.8–36.6%) of the third wave were the only NPIs in this group which 
surpassed other groups in suppressing infection. 

3.3. National and subnational effectiveness of NPIs in the USA 

This study used the USA, as well as its States, as prisms to explain the 
potential spatio-temporal heterogeneity of NPI efficacy on a national 
and subnational scale, respectively. Similar to results at the global scale, 
the overall synergistic effectiveness of NPIs showed a downward trend 
as the COVID-19 pandemic spread across the USA, from 83.27% (IQR 
82.06–84.56%) in the first wave to 58.74% (57.01–60.33%) in the third 
wave, of which gathering restrictions and stay-at-home orders had the 

Fig. 4. The cross-wave and cross-group effects of individual NPIs. Effects of individual NPIs on reducing the transmission of COVID-19 across waves and groups are 
illustrated by different colours associated with their average implementation strength. The dark colour indicates higher strength, while the NPIs effects increased 
from low level (blue) to high level (red). A full list of countries and the corresponding time frames of different waves for each group can be found in SI Table C2 – C5. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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highest effect (>15%) on mitigating outbreaks (Fig. 5). NPIs which had 
moderate impact were facial coverings and school closures (>10%), 
while public transport closures and workplace closures had limited 
effectiveness (<5%). 

From a temporal perspective, the variability of NPIs was assessed 
through comparison of effects of NPIs across State groups. In the first 
wave, school closure was the primary NPI that was associated with a 
significant decline in incidence (>40%). The association between school 
closures and incidence increased with morbidity and mortality among 
groups. Regardless of school closures, the other six NPIs with lower 
effectiveness were internal movement restrictions (median 33.9%, IQR 
28.3–43.5%), workplace closures (25.5%, 18.4–32.8%) and gathering 
restrictions (19.1%, 13.5–25.0%) in Group 1. In Group 2, gathering re-
strictions had the highest effectiveness (59.3%, 54.8–63.3%) beneath 
school closures (64.5%, 58.8% − 69.4%), while facial coverings (14.5%, 
12.7–16.2%) worked in parallel with internal movement restrictions 
(14.1%, 10.8–17.3%) and gathering restrictions (14.5%, 11.3–17.9%) in 
Group 3. In the second wave, school closures still had the highest 
effectiveness in controlling transmission in Group 1. Facial coverings 
significantly enhanced the effectiveness in Group 1, from 4.9% 
(3.2–7.2%) in the first wave to 37.7% (32.3–42.5%) in the second wave. 
In addition, stay-at-home orders had similar contributions, from 2.2% 
(1.4–3.3%) to 25.8% (20.3–31.0%) in Group 2 and 2.6% (1.7–3.9%) to 
31.2% (25.6–36.3%) in Group 3. In the third wave, primary NPIs 
included facial coverings (24.4%, 16.2–32.8%) and school closures 
(22.8%, 15.8% − 29.8%) in Group1; gathering restrictions (21.1%, 
15.3–26.7%) and stay-at-home orders (20.7%, 15.7% − 25.4%) in 
Group; and stay-at-home orders (14.5%, 9.8–19.5%), school closures 
(13.8%, 8.9% − 19.3%), facial coverings (12.0%, 7.8% − 17.1%), in-
ternal movement restrictions (10.3%, 6.6% − 14.7%), and gathering 
restrictions (9.0%, 5.6% − 13.5%) in Group 3. 

3.4. Model validation 

The reliability of our models and corresponding results were evalu-
ated by the leave-forty-countries-out cross validation. We first calibrated 
our model using 70% countries (93 countries), randomly selected from 
133 countries, to estimate the overall NPIs effects in both the first and 
second waves. Then, we derived the instantaneous growth rates through 
the estimated overall effects of NPIs for the remaining 30% countries (40 
countries) in terms of their implemented interventions. We used mean 
square error, ranging from 0 to infinite with 0 representing the perfect 
prediction ability, to assess the difference between the predicted 
instantaneous growth rates and the corresponding empirical instanta-
neous growth rates. We repeated this procedure 50 times, where the 
average mean square error was (median 1.4, interquartile range [IQR] 
1.3 – 2.0). Further, we standardised the predicted and empirical 
instantaneous growth rates, respectively, within each country and then 
analysed all the data with one-way ANOVA. 

3.5. Sensitivity analysis 

The robustness of models and parameters used in the study was also 
assessed by a series of sensitivity analyses. The parameters to be assessed 
included: i) the probability mass of NPIs and vaccination on negative 
effectiveness and ii) the probability mass of sociodemographic factors on 
negative effectiveness. In this study, the default values for these pa-
rameters were 20% and 50%, respectively. The comparison of parameter 
impacts on estimates were listed in SI Table B1, representing three 
scenarios with smaller and larger default parameter settings. The dif-
ferences of NPI effects among three waves were tested using a Wilcoxon 
signed-rank test, a non-parametric statistical hypothesis test for 
comparing NPIs effects between pairs of the three waves. 

4. Discussion 

Based on longitudinal public health interventions and socio- 
demographic datasets across COVID-19 waves, our study revealed that 
NPI measures played overwhelming roles in mitigating the pandemic, 
with varied effects across multi-spatial and temporal scales. Before the 
implementation of mass vaccination, the effectiveness of each individual 
NPI had been over 24.1% on the global level, 10.7% on the regional 
level, 1.0% on the USA national level, and 1.2% on the USA subnational 
level. Regardless of geographic scale and pandemic wave, the overall 
impact of integrated NPIs had been over 52.9% before the start of mass 
vaccination. Our results presented individual and synergistic NPI 
effectiveness in global, regional, national, and subnational scales, and 
this study was the first impact assessment that extended the research 
period from the beginning of the epidemic to before the vaccine rollout, 
to our knowledge. These findings are crucial for continued tailoring and 
implementation of NPI strategies to mitigate COVID-19 transmission 
among future waves (e.g., because of new variants of concern) or similar 
emerging infectious diseases, such as pandemic influenza. 

On a global level, the synergistic effectiveness of NPIs had been 
declining along the waves before the start of mass vaccination. Lock-
down fatigue or pandemic-policy fatigue might be the main reason for 
this phenomenon. Previous studies have found pandemic-policy fatigue 
to be geographically widespread, based on self-reported behaviours 
from a million respondents (Crane et al., 2021; Petherick et al., 2021). 
Reported adherence to high-cost and sensitising interventions, like 
movement restrictions, decreased, while reported adherence to low-cost 
and habituating interventions, like facial coverings, increased in 2020. 
In our findings, the global efficiency of movement restrictions declined 
from 28.56% (IQR 14.56–36.25%) in the first wave to 16.67% 
(0.65–20.00%) in the second wave, while that of facial coverings clim-
bed from 34.98% (14.24–40.82%) to 38.03% (33.22–39.48%), which is 
in accordance with the emergence of pandemic-policy fatigue. Our re-
sults show that the synergistic impact of NPIs and even the effect of 
individual facial coverings in the recent third wave was less than that in 

Fig. 5. The individual efficacy estimates of the seven NPIs for the USA and its subnational regions. Different NPIs are represented by different colours. The groups as 
well as the USA are demonstrated by different symbols. Full lists of states name in each group as well as their defined wave periods can be found in SI Table C6- C8. 
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the second, suggesting the fatigue might continue to increase before 
vaccine rollout. Fatigue might have spread from high-cost interventions 
to lost-cost ones. Therefore, emphasizing the importance of policy 
compliance may have to be put on the agenda by local policy makers in 
pandemic mitigation. 

The synergistic effectiveness of NPIs was not found to decrease 
among all groups and across all waves, however. In Group 1, i.e., 
American, and Oceanian countries with relatively low morbidity and 
mortality, the integrated efficiency of NPIs peaked at the second wave. 
These countries, except for Russia that only had one wave in our anal-
ysis, were largely protected from the epidemic due to the international 
travel control in the first wave (Lai et al., 2021b), and witnessed an 
increased infection rate from 0.52% in the first wave to 0.73% in the 
second wave. The increased infection rate tends to push local people to 
react to the outbreak and maintain vigilance, bringing a higher syner-
gistic NPI effect in the second wave than that in the first one. In Group 2 
and Group 3, i.e., American, and Oceanian countries with relatively high 
morbidity and mortality, and Asian countries, respectively, the syner-
gistic impact of NPIs decreased with each wave. They both experienced 
the most violent epidemic attack in the first wave, and thereafter, a 
better understanding of the coronavirus reduced people’s anxiety about 
the epidemic. Due to economic reasons and people’s expectations of 
recovery, the implementation strength of NPIs declined from average of 
0.67 in the first wave to 0.63 in the third wave in Group 2, and from 0.69 
to 0.52 in Group 3, further reducing the effect of NPIs. For Group 4, 
African countries, though the infection rate declined along the waves, 
the efficiency of integrated NPIs in the third wave surpassed that in the 
second wave. It is worth noting that many Africa nations might lack 
reliable epidemic data because of their reluctance to acknowledge 
epidemic or inadequate testing due to poverty and conflict (Nguimkeu 
and Tadadjeu, 2021). Under-reporting confirmed case numbers and 
under-updated policy data would bring great uncertainty to the analysis 
results. Our results prove that the groups have different epidemic 
development and epidemic prevention trajectories. Countries should 
consider their own epidemic trajectory when learning from other 
countries’ experience in epidemic prevention and control. 

There is partial consistency in NPI effectiveness at multiple 
geographical scales. Firstly, gathering restrictions and facial coverings 
both played significant roles in epidemic mitigation at a global scale and 
the USA national scale. The significant effects of gathering restrictions 
may be attributed to transmission most commonly occurring through 
spread of the virus in droplets or aerosols among people in close contact 
(Jayaweera et al., 2020). Therefore, appropriate levels of gathering re-
strictions and facial coverings should be maintained in subsequent 
waves before herd immunity is achieved. Secondly, the effect of school 
closures in epidemic control was significant at both the global and na-
tional level, with substantial heterogeneity between waves and 
geographic areas at both a regional and subnational level. The strongest 
effect of school closure was observed during the first wave at both global 
and the USA national level, as well as Group 3 at the regional level and 
Group 1 at the USA subnational level. School closures included not only 
primary and second level education institutes, but also universities 
which may serve as a bridge population for family/community trans-
mission of the coronavirus (Head et al., 2021). In areas where school 
closures have had a good effect on epidemic control, this NPI can still be 
used during the vaccine delivery stage. Thirdly, international travel 
restrictions had a stronger protective effect than movement restrictions 
at both a global and regional level, while movement restrictions, espe-
cially stay-at-home orders, reflected its protective role at the national 
and subnational scale. Countries that quickly implemented border 
controls might have reduced the seeding of COVID-19 between coun-
tries, but international travel restrictions cannot prevent local trans-
mission at the community level in countries where the virus had already 
been introduced. The increased effect of movement restriction on 
infection transmission, contributed to by both stay-at-home orders and 
internal movement restrictions in our study, at national and subnational 

level proved that our model has a good explanatory power for the effect 
of NPIs on epidemic migration. 

It should be noted that our research limited the study period from the 
start of case reporting to the start of vaccination in each country. 
Therefore, pandemic-policy fatigue which happened before the vacci-
nation rollout might worsen in the vaccination era. However, studies 
have shown that vaccination alone is insufficient to contain the 
outbreak, even with the most optimistic assumption of 85% infection 
prevention of vaccines (Moore et al., 2021). Especially for the poor and 
people living in areas with low resources (Zhou, 2020). Non- 
pharmaceutical interventions should therefore not be rapidly relaxed 
in the vaccination era, considering the emergence of new variants and 
the inequality of vaccine delivery among countries (Huang et al., 
2021b). 

We acknowledge that there are limitations in our analysis. First, data 
collected from public data sources may generate certain uncertainty. We 
did not make our own datasets from the sources but used publicly 
released ones from Johns Hopkins University, CDC, OxCGRT, United 
Nations, AHA, and so on. Data produced by different institutions may 
have differences in data due to subtle differences in statistical calibres 
and related regulations. Due to the huge amount of data and the rela-
tively reliable data sources, in the absence of obvious inconsistencies in 
the data, we did not analyse the differences in data source statistics and 
uncertainty, which might bring uncertainties to the results. Second, the 
interactions among the seven NPIs were not considered in this study, 
and it is difficult to identify the effects of individual interventions and 
define the causality between NPIs and the change of Covid-19 trajec-
tories if countries implemented several NPIs simultaneously (Flaxman, 
et al., 2020; Sharma et al., 2021). However, the uncoordinated deployed 
NPIs strategies across countries might have provided an opportunity to 
evaluate the empirical effectiveness of NPIs over space and times, and 
such data-generated correlations between NPIs implementation and 
Covid-19 transmission have provided important insights of NPI effec-
tiveness in the first wave (Brauner, et al., 2021; Flaxman, et al., 2020). 
Third, we used grouped regional research instead of researching each 
country while the effects of NPIs might have some differences in 
different countries. However, the group results should be more robust 
than that from a single country because of a larger number of samples in 
each group considered. The effects of NPIs within each group were 
assumed following gamma distribution based on previous studies 
(Flaxman et al., 2020; Lai et al., 2020a). The obtained different NPI 
effects reflected the overall effects in different waves and groups while 
varied in different countries. 

Overall, the disclosure of epidemic, publicized responses and big 
data allow us to estimate and compare the cross-wave effects of public 
health measures at global, regional, national, and subnational scales. 
Our work provides a quantitative basis and approach to explore historic 
spatio-temporal variation in the effectiveness of individual NPIs before 
the mass implementation of vaccination. The overall effectiveness of 
NPIs shows a downward trend between waves, possibly due to policy 
fatigue. Even though the synergistic efficiency of NPIs has been over 
50% in recent waves before the vaccine rollout, the reducing effect over 
time deserves our vigilance, especially in areas lacking vaccines. 
Through the verification of multi-scale results, our study certified the 
effectiveness of gathering restrictions and facial coverings in the 
epidemic mitigation, which could be maintained in the following waves 
and mitigate pandemics caused by other emerging respiratory infectious 
diseases in the future. 

Data and code availability 

All source code and data necessary for the replication of our results 
and figures are available at: https://github. 
com/wxl1379457192/NPIs_code 
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